

Co-simulation with GHDL

This repository contains documentation and working examples about how to co-simulate VHDL and other languages through
GHDL’s foreign interfaces. Since specific features of the language and the tool are used, it is suggested for users
who are new to either GHDL or VHDL to first read the Quick Start Guide [https://ghdl.readthedocs.io/en/latest/examples/quick_start/README.html#using-quickstart] in the main documentation
(ghdl.rtfd.io [https://ghdl.rtfd.io]).

Three main approaches are used to co-simulate (co-execute) VHDL sources along with software applications written in a
language other than VHDL (typically C/C++/SystemC):

	Verilog Procedural Interface (VPI), also known as Program Language Interface (PLI) 2.0.

	VHDL Procedural Interface (VHPI), or specific implementations, such as Foreign Language Interface (FLI).

	Generation of C/C++ models/sources through a transpiler.

VPI and VHPI are complex APIs which allow to inspect the hierarchy, set callbacks and/or assign signals. Because
provided features are similar, GHDL supports VPI only. Furthermore, as an easier to use alternative, GHDL features a
custom coexecution procedure named VHPIDIRECT, similar to SystemVerilog’s Direct Programming Interface (DPI).
As of today, generation of C++/SystemC models à la Verilator is not supported. However, a vhdlator/ghdlator might
be available in the future.

VHPIDIRECT

	Type declarations
	Restrictions on type declarations

	Wrapping a simulation (ghdl_main)

	Linking object files
	Linking foreign object files to GHDL

	Linking GHDL object files to Ada/C

	Dynamic loading
	Loading foreign objects from within a simulation

	Generating shared libraries

	Loading a simulation

	Using GRT
	From Ada

	Examples
	Quick Start
	random

	math

	customc

	package

	Wrapping
	basic

	time

	Linking
	bind

	Shared
	shlib

	dlopen

	shghdl

	Arrays
	A Bounded Array Sized in C
	A Bounded Array Sized in C: First defined in main()

	A Bounded Array Sized in VHDL

	Other co-simulation projects
	VUnit

	ghdlex and netpp

Interfacing with foreign languages through VHPIDIRECT is possible on any platform.
You can define a subprogram in a foreign language (such as C or
Ada) and import it into a VHDL design.

Note

GHDL supports different backends, and not all of them generate binary artifacts. Precisely, mcode is an in-memory
backend. Hence, the examples need to be built/executed with either LLVM or GCC backends. A few of them, the ones that
do not require linking object files, can be used with mcode.

Attention

As a consequence of the runtime copyright, you are not allowed to distribute an
executable produced by GHDL without allowing access to the VHDL sources. See
Copyrights | Licenses [https://ghdl.readthedocs.io/en/latest/licenses.html#intro-copyrights].

Tip

See ghdl#1053 [https://github.com/ghdl/ghdl/issues/1053] for on-going work with regard to VHPIDIRECT.

VPI

	Examples

See VPI build commands [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#vpi-build-commands].

TBC

Type declarations

Only subprograms (functions or procedures) can be imported using the foreign
attribute. In the following minimal example,
the sin function is imported:

package math is
 function sin (v : real) return real;
 attribute foreign of sin : function is "VHPIDIRECT sin";
end math;

package body math is
 function sin (v : real) return real is
 begin
 assert false severity failure;
 end sin;
end math;

Requirements:

	A subprogram is made foreign if the foreign attribute decorates
it.

	The attribute specification must be in the same declarative part as the
subprogram and must be after it. This is a general rule for specifications.

	The value of the specification must be a locally static string.

	The value of the attribute must start with VHPIDIRECT (an upper-case keyword
followed by one or more blanks). The linkage name of the subprogram follows. The
path to a shared library can be optionally specified between the keyword and the
name of the subprogram (see shlib).

	Even when a subprogram is foreign, its body must be present in VHDL. However, since
it won’t be called, you can make it empty or simply put an assertion. If the body
is ever executed, that will mean that the foreign resource was not properly linked.

	Except for resources in the standard C library (which is linked by default), the
object file with the source code for foreign subprogram(s) must then be linked to
GHDL, expanded upon in Linking object files.

Note

Attribute foreign is declared in the 1993 revision of the std.standard package.
Therefore, it cannot be used in VHDL 1987.

Restrictions on type declarations

Any subprogram can be imported. GHDL puts no restrictions on foreign
subprograms. However, the representation of a type or of an interface in a
foreign language may be obscure. Most non-composite types are easily imported:

	integer types

	32 bit word. Generally, int for C or Integer for Ada.

	physical types

	64 bit word. Generally, long long for C or Long_Long_Integer for Ada.

	floating point types

	64 bit floating point word. Generally, double for C or Long_Float for Ada.

	enumeration types

	8 bit word, or, if the number of literals is greater than 256, by a 32 bit word.
There is no corresponding C type, since arguments are not promoted.

Non-composite types are passed by value. For the in mode (default), this corresponds
to the C or Ada mechanism. out and inout interfaces are gathered in a record and
this record is passed by reference as the first argument to the subprogram. As a
consequence, it is not suggested to use out and/or inout modes in foreign
subprograms, since they are not portable.

Composite types:

	Records are represented like a C structure and are passed by reference to subprograms.

	Arrays with static bounds are represented like a C array, whose length is the number
of elements, and are passed by reference to subprograms.

	Unconstrained arrays are represented by a fat pointer. It is not suggested to use
unconstrained arrays in foreign subprograms.

	Accesses to an unconstrained array are fat pointers. Other accesses correspond to an
address/pointer and are passed to a subprogram like other non-composite types.

	Files are represented by a 32 bit word, which corresponds to an index in a table.

Wrapping a simulation (ghdl_main)

You may run your design from an external program. You just have to call
the ghdl_main function which can be defined:

in C:

extern int ghdl_main (int argc, char **argv);

in Ada:

with System;
...
function Ghdl_Main (Argc : Integer; Argv : System.Address)
 return Integer;
pragma import (C, Ghdl_Main, "ghdl_main");

Tip

Don’t forget to list the object file(s) of this entry point and other foreign sources, as per Linking foreign object files to GHDL.

Attention

The ghdl_main function must be called once, since reseting/restarting the simulation runtime is not supported yet. A workaround is to build the simulation as a shared object and load the ghdl_main symbol from it (see shghdl).

Hint

Immitating the run time flags, such as -gDEPTH=12 from -gGENERIC [https://ghdl.readthedocs.io/en/latest/using/Simulation.html#cmdoption-ghdl-ggeneric], requires the argv to have the executable’s path at index 0, effectively shifting all other indicies along by 1. This can be taken from the 0 index of the argv passed to main(), or (not suggested, despite a lack of consequences) left empty/null.

Since ghdl_main is the entrypoint to the design (GRT runtime), the supported CLI options are the ones shown in Simulation (runtime) [https://ghdl.readthedocs.io/en/latest/using/Simulation.html#using-simulation]. Options for analysis/elaboration are not required and will NOT work. See -r [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-r].

Linking object files

Linking foreign object files to GHDL

You may add additional files or options during the link of GHDL using
-Wl, as described in Passing options to other programs [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#passing-options-to-other-programs].
For example:

ghdl -e -Wl,-lm math_tb

will create the math_tb executable with the lm (mathematical)
library.

Note the c library is always linked with an executable.

Hint

The process for personal code is the same, provided the code is provided as a C source or compiled to an object file.
Analysis must be made of the HDL files, then elaboration with -e -Wl,personal.c [options...] primary_unit [secondary_unit] as arguments.
Additional C or object files are flagged as separate -Wl,* arguments. The elaboration step will compile the executable with the custom resources.
Further reading (particularly about the backend particularities) is at Elaboration [-e] [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#elaboration-command] and Run [-r] [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#run-command].

Linking GHDL object files to Ada/C

As explained previously in Wrapping a simulation (ghdl_main),
you can start a simulation from an Ada or C program. However the build
process is not trivial: you have to elaborate your program and your
VHDL design.

Hint

If the foreign language is C, this procedure is equivalent to the one described in
Linking foreign object files to GHDL, which is easier. Thus, this procedure is
explained for didactic purposes. When suitable, we suggest to use -e [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e], instead
of --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] and --list-link [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link].

First, you have to analyze all your design files. In this example, we
suppose there is only one design file, design.vhdl.

$ ghdl -a design.vhdl

Then, bind your design. In this example, we suppose the entity at the
design apex is design.

$ ghdl --bind design

Finally, compile/bind your program and link it with your VHDL
design:

in C:

gcc my_prog.c -Wl,`ghdl --list-link design`

in Ada:

$ gnatmake my_prog -largs `ghdl --list-link design`

See GCC/LLVM only commands [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#gccllvm-only-programs] for further details about --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] and --list-link [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link].

Dynamic loading

Building either foreign resources or the VHDL simulation model as shared libraries allows to decouple the build procedures.

Loading foreign objects from within a simulation

Instead of linking and building foreign objects along with GHDL, it is also possible to load foreign resources dynamically.
In order to do so, provide the path and name of the shared library where the resource is to be loaded from. For example:

attribute foreign of get_rand: function is "VHPIDIRECT ./getrand.so get_rand";

Generating shared libraries

Tip

Ensure reading and understanding Linking object files before this one.

There are three possibilities to elaborate simulation models as shared libraries, instead of executable binaries:

	ghdl -e -shared [options...] primary_unit [secondary_unit]

	ghdl -e -Wl,-shared -Wl,-Wl,--version-script=./file.ver -Wl,-Wl,-u,ghdl_main [options...] primary_unit [secondary_unit]

	gcc -shared -Wl,`ghdl --list-link tb` -Wl,--version-script=./file.ver -Wl,-u,ghdl_main

The only difference between the two later procedures is the entrypoint (GHDL or GCC). Preference depends on the additional options that users need to provide. The main difference with the former is that it will make all symbols visible in the resulting shared library. In the other two procedures, visible symbols will be the ones defined in the default grt.ver added by GHDL and the file.ver provided by the user. Note that file.ver must include ghdl_main and any other added by the user. See example shghdl and ghdl-cosim#2 [https://github.com/ghdl/ghdl-cosim/issues/2].

Hint

When GHDL is configured with --default-pic explicitly, it uses it implicitly when executing any -a [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-a], -e [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e] or -r [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-r] command. Hence, it is not required to provide these arguments (fPIC/PIE) to GHDL. However, these might need to be provided when building C sources with GCC. Otherwise linker errors such as the following are produced:

Hint

For further details regarding how to call ghdl_main see Wrapping a simulation (ghdl_main).

Note

Alternatively, if the shared library is built with --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] and --list-link [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link], the output from the later can be filtered with tools such as sed in order to remove the default version script (accomplished in ghdl#640 [https://github.com/ghdl/ghdl/issues/640]), and make all symbols visible by default. However, this procedure is only recommended in edge cases where other solutions don’t fit.

Loading a simulation

Attention

By default, GHDL uses grt.ver to limit which symbols are exposed in the generated artifacts, and ghdl_main is not included. See Generating shared libraries for guidelines to generate shared objects with visible or filtered symbols.

In order to generate a position independent executable (PIE), be it an executable binary
or a shared library, GHDL must be built with config option --default-pic. This will ensure
that all the libraries and sources analyzed by GHDL generate position independent code (PIC).

PIE binaries can be loaded and executed from any language that supports C-alike signatures and types
(C, C++, golang, Python, Rust, etc.). This allows seamless co-simulation using concurrent/parallel execution features available in each language:
pthreads, goroutines/gochannels, multiprocessing/queues, etc. Moreover, it provides a mechanism to execute multiple
GHDL simulations in parallel.

For example, in Python:

import ctypes
gbin = ctypes.CDLL(bin_path)

args = ['-gGENA="value"', 'gGENB="value"']

xargs = (ctypes.POINTER(ctypes.c_char) * (len(args) + 1))()
for i, arg in enumerate(args):
 xargs[i] = ctypes.create_string_buffer(arg.encode('utf-8'))
return args[0], xargs

gbin.main(len(xargv)-1, xargv)

import _ctypes
On GNU/Linux
_ctypes.dlclose(gbin._handle)
On Windows
#_ctypes.FreeLibrary(gbin._handle)

See a complete example written in C in shghdl.

Tip

As explained in Wrapping a simulation (ghdl_main), ghdl_main must be called once, since reseting/restarting the simulation runtime is not supported yet (see ghdl#1184 [https://github.com/ghdl/ghdl/issues/1184]). When it is loaded dynamically, this means that the binary file/library needs to be unloaded from memory and loaded again (as in shghdl).

Tip

See ghdl#803 [https://github.com/ghdl/ghdl/issues/803] for details about expected differences in the exit codes, depending on the version of the VHDL standard that is used.

Using GRT

From Ada

Warning

This topic is only for advanced users who know how to use Ada
and GNAT. This is provided only for reference; we have tested
this once before releasing GHDL 0.19, but this is not checked at
each release.

The simulator kernel of GHDL named GRT is written in
Ada95 and contains a very light and slightly adapted version
of VHPI. Since it is an Ada implementation it is
called AVHPI. Although being tough, you may interface to AVHPI.

For using AVHPI, you need the sources of GHDL and to recompile
them (at least the GRT library). This library is usually compiled with
a No_Run_Time pragma, so that the user does not need to install the
GNAT runtime library. However, you certainly want to use the usual
runtime library and want to avoid this pragma. For this, reset the
GRT_PRAGMA_FLAG variable.

$ make GRT_PRAGMA_FLAG= grt-all

Since GRT is a self-contained library, you don’t want
gnatlink to fetch individual object files (furthermore this
doesn’t always work due to tricks used in GRT). For this,
remove all the object files and make the .ali files read-only.

$ rm *.o
$ chmod -w *.ali

You may then install the sources files and the .ali files. I have never
tested this step.

You are now ready to use it.

Here is an example, test_grt.adb which displays the top
level design name.

with System; use System;
with Grt.Avhpi; use Grt.Avhpi;
with Ada.Text_IO; use Ada.Text_IO;
with Ghdl_Main;

procedure Test_Grt is
 -- VHPI handle.
 H : VhpiHandleT;
 Status : Integer;

 -- Name.
 Name : String (1 .. 64);
 Name_Len : Integer;
begin
 -- Elaborate and run the design.
 Status := Ghdl_Main (0, Null_Address);

 -- Display the status of the simulation.
 Put_Line ("Status is " & Integer'Image (Status));

 -- Get the root instance.
 Get_Root_Inst(H);

 -- Disp its name using vhpi API.
 Vhpi_Get_Str (VhpiNameP, H, Name, Name_Len);
 Put_Line ("Root instance name: " & Name (1 .. Name_Len));
end Test_Grt;

First, analyze and bind your design:

$ ghdl -a counter.vhdl
$ ghdl --bind counter

Then build the whole:

$ gnatmake test_grt -aL`grt_ali_path` -aI`grt_src_path` -largs
 `ghdl --list-link counter`

Finally, run your design:

$./test_grt
Status is 0
Root instance name: counter

Examples

	Quick Start
	random

	math

	customc

	package

	Wrapping
	basic

	time

	Linking
	bind

	Shared
	shlib

	dlopen

	shghdl

	Arrays
	A Bounded Array Sized in C
	A Bounded Array Sized in C: First defined in main()

	A Bounded Array Sized in VHDL

	Other co-simulation projects
	VUnit

	ghdlex and netpp

Quick Start

random [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/quickstart/random]

By default, GHDL includes the standard C library in the generated simulation models. Hence, resources from stdlib can be used without any modification to the build procedure.

This example shows how to import and use rand to generate and print 10 integer numbers. The VHDL code is equivalent to the following C snippet. However, note that this C source is NOT required, because stdlib is already built in.

#include <stdlib.h>
#include <stdio.h>

int main (void) {
 int i;
 for (i = 0; i < 10; i++)
 printf ("%d\n", rand ());
 return 0;
}

math [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/quickstart/math]

By the same token, it is possible to include functions from system library by just providing the corresponding linker flag.

In this example, function sin from the math library is used to compute 10 values. As in the previous example, no additional C sources are required, because the math library is already compiled and installed in the system.

customc [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/quickstart/customc]

When the required functionality is not available in pre-built libraries, custom C sources and/or objects can be added to the elaboration and/or linking.

This example shows how to bind custom C functions in VHDL as either procedures or functions. Four cases are included: custom_procedure, custom_procedure_withargs, custom_function and custom_function_withargs. In all cases, the parameters are defined as integers, in order to keep it simple. See Type declarations for further details.

Since either C sources or pre-compiled .o objects can be added, in C/C++ projects of moderate complexity, it might be desirable to merge all the C sources in a single object before elaborating the design.

package [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/quickstart/package]

If the auxillary VHPIDIRECT subprograms need to be accessed in more than one entity, it is possible to package the subprograms. This also makes it very easy to reuse the VHPIDIRECT declarations in different projects.

In this example 2 different entities use a C defined c_printInt(val: integer) subprogram to print two different numbers. Subprogram declaration requirements are detailed under the Type declarations section.

Wrapping

basic [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/wrapping/basic]

Instead of using GHDL’s own entrypoint to the execution, it is possible to wrap it by providing a custom main function. Upon existence of main, execution of the simulation is triggered by calling ghdl_main.

This is the most basic example of such usage. ghdl_main is declared as extern in C, and arguments argc and argv are passed without modification. However, this sets the ground for custom prepocessing and postprocessing in a foreign language.

Other options are to just pass empty arguments (ghdl_main(0, NULL)) or to customize them:

char* args[] = {NULL, "--wave=wave.ghw"};
ghdl_main(2, args);

See Wrapping a simulation (ghdl_main) for further details about the constraints of argv.

time [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/wrapping/time]

Although most of the provided examples are written in C, VHPIDIRECT can be used with any language that supports a C-alike compile and link model.

This example shows how to time the execution of a simulation from either C or Ada. In both cases, function clock is used to get the time before and after calling ghdl_main. Regarding the build procedure, it is to be noted that C sources are elaborated with -e [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e], because GHDL allows to pass parameters (in this case, additional C sources) to the compiler and/or linker. However, since it is not possible to do so with Ada, gnatmake, --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] and --list-link [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link] are used instead. See Linking object files for further info about custom linking setups.

Hint

Compared to the previous example, the declaration of ghdl_main includes three arguments in this example: int argc, void** argv, void** envp. This is done for illustration purposes only, as it has no real effect on the exercise.

Linking

bind [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/linking/bind]

Although GHDL’s elaborate command can compile and link C sources, it is sometimes preferred or required to call a compiler explicitly with custom arguments. This is useful, e.g., when a simulation is to be embedded in the build of an existing C/C++ application.

This example is equivalent to basic, but it shows how to use --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] and --list-link [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link] instead of -e [https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e]. See Linking object files for further details.

Hint

Objects generated by --bind [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind] are created in the working directory. See GCC/LLVM only commands [https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#gccllvm-only-programs] and ghdl#781 [https://github.com/ghdl/ghdl/issues/781].

Shared

Important

As explained in Loading a simulation, in order to load binaries/libraries dynamically, those need to be built as position independent code/executables (PIC/PIE).

shlib [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/shared/shlib]

This example features the same functionality as random. However, custom C sources are use (as in customc) and these are built as a shared library. See Loading foreign objects from within a simulation for further info.

dlopen [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/shared/dlopen]

Although this example does not include a simulation built with GHDL, it is a test and the introduction to the next example. In this test, two separate shared libraries are built from C sources, both including a function named ghdl_main. Then, in a main C application, both shared libraries are dynamically loaded at the same time, and both are executed (one after the other)

This example tests whether symbol ghdl_main is visible in the shared libraries, and whether the same symbol name can be loaded from multiple shared libraries (and used) at the same time.

Tip

If the symbol is not found, try adding -g, -rdynamic and/or -O0 when building the shared libraries. Tools such as objdump, readelf or nm can be used to check if a symbol is visible. For instance, objdump -d corea.so | grep ghdl_main.

Hint

Building multiple designs as separate artifacts and dynamically loading them at the same time is a naive approach to multi-core simulation with GHDL. It is also a possible solution for coarse grained co-simulation with Verilator.

shghdl [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/shared/shghdl]

This example is complementary to shlib, since the VHDL simulation is built as a shared library, which is then loaded from a main C application (as in dlopen).

When main is executed:

	The shared libray is loaded, symbol print_something is searched for, and it is executed.

	Symbol ghdl_main is searched for, and it is executed three times. Unfortunately, GHDL does not currently support reseting/restarting the simulation runtime. Hence, in this example the shared library is unloaded and loaded again before calling ghdl_main after the first time.

See Generating_shared_libraries for further details with regard to the visibility of symbols in the shared libraries.

Note

On GNU/linux, both executable binaries and shared libraries use the ELF format. As a result, although hackish, it is possible to load an executable binary dynamically, i.e. without using any of the shared options explained in Generating_shared_libraries. In this example, this case is also tested. However, this is not suggested at all, since it won’t work on all platforms.

Arrays

A Bounded Array Sized in C [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/arrays/intvector]

Integer arrays fully defined in C can be passed to VHDL by first passing their size, so that an appropriate array
type can be created to hold the array’s pointer. After that, a VHDL subprogram can be defined to return the array access.

A Bounded Array Sized in C: First defined in main() [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/arrays/intvector/maindefined]

If the integer array must be created or filled by some more advanced process before VHDL can request the array’s pointer, it is
possible to execute the GHDL simulation within a custom int main() entrypoint (see basic).
In this example the custom entrypoint prompts the user for the size of the array and then handles the variables appropriately before
going on to execute the GHDL simulation.

A Bounded Array Sized in VHDL [https://github.com/ghdl/ghdl-cosim/blob/master/vhpidirect/arrays/intvectorgeneric]

Interface generics are the generics of the toplevel VHDL entity, and their values can be set via GHDL’s runtime option -g (see Simulation options [https://ghdl.readthedocs.io/en/latest/using/Simulation.html#simulation-options]). In this example an interface generic is used as an argument for the call of the VHPIDIRECT subprogram c_intArr_ptr(arraySize: integer). This subprogram is linked to the foreign C function getIntArr_ptr(int arraySize) which uses the argument to allocate an int* enough space to contain arraySize integers, populating each index thereafter. The subprogram returns the array’s pointer and each index is printed out in VHDL.

Note

The C function is actually extended to handle a second call. If the int* has been used before its memory is freed, and if the new arraySize is greater than 0, the pointer is allocated enough memory again. In this way, a VHDL subprogram call of c_intArr_ptr(0); frees the previously allocated memory.

Other co-simulation projects

This sections contains references to other co-simulation projects based on GHDL and VHPIDIRECT.

VUnit

VUnit [https://github.com/VUnit/vunit] is an open source unit testing framework for VHDL/SystemVerilog. Sharing memory buffers between foreign C or Python applications and VHDL testbenches is supported through GHDL’s VHPIDIRECT features. Buffers are accessed from VHDL as either strings, arrays of bytes or arrays of 32 bit integers. See VUnit example external buffer [https://github.com/VUnit/vunit/tree/master/examples/vhdl/external_buffer] for details about the API.

ghdlex and netpp

netpp (network property protocol) [https://section5.ch/index.php/netpp/] is a communication library allowing to expose variables or other properties of an application to the network as abstract ‘Properties’. Its basic philosophy is that a device always knows its capabilities. netpp capable devices can be explored by command line, Python scripts or GUI applications. Properties of a device - be it virtual or real - are typically described by a static description in an XML device description language, but they can also be constructed on the fly.

ghdlex [https://github.com/hackfin/ghdlex] is a set of C extensions to facilitate data exchange between a GHDL simulation and external applications. VHPIDIRECT mechanisms are used to wrap GHDL data types into structures usable from a C library. ghdlex uses the netpp [https://section5.ch/index.php/netpp/] library to expose virtual entities (such as pins or RAM) to the network. It also demonstrates simple data I/O through unix pipes. A few VHDL example entities are provided, such as a virtual console, FIFOs, RAM.

The author of netpp and ghdlex is also working on MaSoCist [https://github.com/hackfin/MaSoCist], a linux’ish build system for System on Chip designs, based on GHDL. It allows to handle more complex setup, e.g. how a RISC-V architecture (for example) is regress-tested using a virtual debug interface.

Examples

TBC

Index

 F
 | I
 | O
 | S
 | V

F

 	
 	foreign

I

 	
 	interfacing

O

 	
 	other languages

S

 	
 	SystemC

V

 	
 	VHPI

 	
 	VHPIDIRECT

 	VPI

 _static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Co-simulation with GHDL

 		
 Type declarations

 		
 Restrictions on type declarations

 		
 Wrapping a simulation (ghdl_main)

 		
 Linking object files

 		
 Linking foreign object files to GHDL

 		
 Linking GHDL object files to Ada/C

 		
 Dynamic loading

 		
 Loading foreign objects from within a simulation

 		
 Generating shared libraries

 		
 Loading a simulation

 		
 Using GRT

 		
 From Ada

 		
 Examples

 		
 Quick Start

 		
 random

 		
 math

 		
 customc

 		
 package

 		
 Wrapping

 		
 basic

 		
 time

 		
 Linking

 		
 bind

 		
 Shared

 		
 shlib

 		
 dlopen

 		
 shghdl

 		
 Arrays

 		
 A Bounded Array Sized in C

 		
 A Bounded Array Sized in VHDL

 		
 Other co-simulation projects

 		
 VUnit

 		
 ghdlex and netpp

 		
 Examples

_static/comment-bright.png

_static/ajax-loader.gif

