
GHDL Cosimulation Documentation
Release latest

Tristan Gingold and contributors

Apr 18, 2020

VHPIDIRECT

1 Type declarations 3
1.1 Restrictions on type declarations . 4

2 Wrapping a simulation (ghdl_main) 5

3 Linking object files 7
3.1 Linking foreign object files to GHDL . 7
3.2 Linking GHDL object files to Ada/C . 7

4 Dynamic loading 9
4.1 Loading foreign objects from within a simulation . 9
4.2 Generating shared libraries . 9
4.3 Loading a simulation . 10

5 Using GRT 13
5.1 From Ada . 13

6 Examples 15
6.1 Quick Start . 15
6.2 Wrapping . 16
6.3 Linking . 17
6.4 Shared . 17
6.5 Arrays . 18
6.6 Other co-simulation projects . 18

7 Examples 21

Index 23

i

ii

GHDL Cosimulation Documentation, Release latest

This repository contains documentation and working examples about how to co-simulate VHDL and other lan-
guages through GHDL’s foreign interfaces. Since specific features of the language and the tool are used, it is
suggested for users who are new to either GHDL or VHDL to first read the Quick Start Guide in the main docu-
mentation (ghdl.rtfd.io).

Three main approaches are used to co-simulate (co-execute) VHDL sources along with software applications
written in a language other than VHDL (typically C/C++/SystemC):

• Verilog Procedural Interface (VPI), also known as Program Language Interface (PLI) 2.0.

• VHDL Procedural Interface (VHPI), or specific implementations, such as Foreign Language Interface (FLI).

• Generation of C/C++ models/sources through a transpiler.

VPI and VHPI are complex APIs which allow to inspect the hierarchy, set callbacks and/or assign signals. Because
provided features are similar, GHDL supports VPI only. Furthermore, as an easier to use alternative, GHDL
features a custom coexecution procedure named VHPIDIRECT, similar to SystemVerilog’s Direct Programming
Interface (DPI). As of today, generation of C++/SystemC models à la Verilator is not supported. However, a
vhdlator/ghdlator might be available in the future.

VHPIDIRECT 1

https://ghdl.readthedocs.io/en/latest/examples/quick_start/README.html#using-quickstart
https://ghdl.rtfd.io

GHDL Cosimulation Documentation, Release latest

2 VHPIDIRECT

CHAPTER 1

Type declarations

Only subprograms (functions or procedures) can be imported using the foreign attribute. In the following mini-
mal example, the sin function is imported:

package math is
function sin (v : real) return real;
attribute foreign of sin : function is "VHPIDIRECT sin";

end math;

package body math is
function sin (v : real) return real is
begin
assert false severity failure;

end sin;
end math;

Requirements:

• A subprogram is made foreign if the foreign attribute decorates it.

• The attribute specification must be in the same declarative part as the subprogram and must be after it.
This is a general rule for specifications.

• The value of the specification must be a locally static string.

• The value of the attribute must start with VHPIDIRECT (an upper-case keyword followed by one or more
blanks). The linkage name of the subprogram follows. The path to a shared library can be optionally
specified between the keyword and the name of the subprogram (see shlib).

• Even when a subprogram is foreign, its body must be present in VHDL. However, since it won’t be called,
you can make it empty or simply put an assertion. If the body is ever executed, that will mean that the
foreign resource was not properly linked.

• Except for resources in the standard C library (which is linked by default), the object file with the source
code for foreign subprogram(s) must then be linked to GHDL, expanded upon in Linking object files.

Note: Attribute foreign is declared in the 1993 revision of the std.standard package. Therefore, it cannot
be used in VHDL 1987.

3

GHDL Cosimulation Documentation, Release latest

1.1 Restrictions on type declarations

Any subprogram can be imported. GHDL puts no restrictions on foreign subprograms. However, the represen-
tation of a type or of an interface in a foreign language may be obscure. Most non-composite types are easily
imported:

integer types 32 bit word. Generally, int for C or Integer for Ada.

physical types 64 bit word. Generally, long long for C or Long_Long_Integer for Ada.

floating point types 64 bit floating point word. Generally, double for C or Long_Float for Ada.

enumeration types 8 bit word, or, if the number of literals is greater than 256, by a 32 bit word. There is no
corresponding C type, since arguments are not promoted.

Non-composite types are passed by value. For the in mode (default), this corresponds to the C or Ada mechanism.
out and inout interfaces are gathered in a record and this record is passed by reference as the first argument to the
subprogram. As a consequence, it is not suggested to use out and/or inout modes in foreign subprograms, since
they are not portable.

Composite types:

• Records are represented like a C structure and are passed by reference to subprograms.

• Arrays with static bounds are represented like a C array, whose length is the number of elements, and are
passed by reference to subprograms.

• Unconstrained arrays are represented by a fat pointer. It is not suggested to use unconstrained arrays in
foreign subprograms.

• Accesses to an unconstrained array are fat pointers. Other accesses correspond to an address/pointer and
are passed to a subprogram like other non-composite types.

• Files are represented by a 32 bit word, which corresponds to an index in a table.

4 Chapter 1. Type declarations

CHAPTER 2

Wrapping a simulation (ghdl_main)

You may run your design from an external program. You just have to call the ghdl_main function which can be
defined:

in C:

extern int ghdl_main (int argc, char **argv);

in Ada:

with System;
...
function Ghdl_Main (Argc : Integer; Argv : System.Address)

return Integer;
pragma import (C, Ghdl_Main, "ghdl_main");

Tip: Don’t forget to list the object file(s) of this entry point and other foreign sources, as per Linking foreign
object files to GHDL.

Attention: The ghdl_main function must be called once, since reseting/restarting the simulation runtime
is not supported yet. A workaround is to build the simulation as a shared object and load the ghdl_main
symbol from it (see shghdl).

Hint: Immitating the run time flags, such as -gDEPTH=12 from -gGENERIC, requires the argv to have the
executable’s path at index 0, effectively shifting all other indicies along by 1. This can be taken from the 0 index
of the argv passed to main(), or (not suggested, despite a lack of consequences) left empty/null.

Since ghdl_main is the entrypoint to the design (GRT runtime), the supported CLI options are the ones shown
in Simulation (runtime). Options for analysis/elaboration are not required and will NOT work. See -r.

5

https://ghdl.readthedocs.io/en/latest/using/Simulation.html#cmdoption-ghdl-ggeneric
https://ghdl.readthedocs.io/en/latest/using/Simulation.html#using-simulation
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-r

GHDL Cosimulation Documentation, Release latest

6 Chapter 2. Wrapping a simulation (ghdl_main)

CHAPTER 3

Linking object files

3.1 Linking foreign object files to GHDL

You may add additional files or options during the link of GHDL using -Wl, as described in Passing options to
other programs. For example:

ghdl -e -Wl,-lm math_tb

will create the math_tb executable with the lm (mathematical) library.

Note the c library is always linked with an executable.

Hint: The process for personal code is the same, provided the code is provided as a C source or compiled to an ob-
ject file. Analysis must be made of the HDL files, then elaboration with -e -Wl,personal.c [options..
.] primary_unit [secondary_unit] as arguments. Additional C or object files are flagged as separate
-Wl,* arguments. The elaboration step will compile the executable with the custom resources. Further reading
(particularly about the backend particularities) is at Elaboration [-e] and Run [-r].

3.2 Linking GHDL object files to Ada/C

As explained previously in Wrapping a simulation (ghdl_main), you can start a simulation from an Ada or C
program. However the build process is not trivial: you have to elaborate your program and your VHDL design.

Hint: If the foreign language is C, this procedure is equivalent to the one described in Linking foreign object files
to GHDL, which is easier. Thus, this procedure is explained for didactic purposes. When suitable, we suggest to
use -e, instead of --bind and --list-link.

First, you have to analyze all your design files. In this example, we suppose there is only one design file, design.
vhdl.

$ ghdl -a design.vhdl

Then, bind your design. In this example, we suppose the entity at the design apex is design.

7

https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#passing-options-to-other-programs
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#passing-options-to-other-programs
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#elaboration-command
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#run-command
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link

GHDL Cosimulation Documentation, Release latest

$ ghdl --bind design

Finally, compile/bind your program and link it with your VHDL design:

in C:

gcc my_prog.c -Wl,`ghdl --list-link design`

in Ada:

$ gnatmake my_prog -largs `ghdl --list-link design`

See GCC/LLVM only commands for further details about --bind and --list-link.

8 Chapter 3. Linking object files

https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#gccllvm-only-programs
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link

CHAPTER 4

Dynamic loading

Building either foreign resources or the VHDL simulation model as shared libraries allows to decouple the build
procedures.

4.1 Loading foreign objects from within a simulation

Instead of linking and building foreign objects along with GHDL, it is also possible to load foreign resources
dynamically. In order to do so, provide the path and name of the shared library where the resource is to be loaded
from. For example:

attribute foreign of get_rand: function is "VHPIDIRECT ./getrand.so get_rand";

4.2 Generating shared libraries

Tip: Ensure reading and understanding Linking object files before this one.

There are three possibilities to elaborate simulation models as shared libraries, instead of executable binaries:

• ghdl -e -shared [options...] primary_unit [secondary_unit]

• ghdl -e -Wl,-shared -Wl,-Wl,--version-script=./file.ver -Wl,-Wl,-u,
ghdl_main [options...] primary_unit [secondary_unit]

• gcc -shared -Wl,`ghdl --list-link tb` -Wl,--version-script=./file.ver
-Wl,-u,ghdl_main

The only difference between the two later procedures is the entrypoint (GHDL or GCC). Preference depends on
the additional options that users need to provide. The main difference with the former is that it will make all
symbols visible in the resulting shared library. In the other two procedures, visible symbols will be the ones
defined in the default grt.ver added by GHDL and the file.ver provided by the user. Note that file.ver
must include ghdl_main and any other added by the user. See example shghdl and ghdl-cosim#2.

Hint: When GHDL is configured with --default-pic explicitly, it uses it implicitly when executing any -a,
-e or -r command. Hence, it is not required to provide these arguments (fPIC/PIE) to GHDL. However, these

9

https://github.com/ghdl/ghdl-cosim/issues/2
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-a
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-r

GHDL Cosimulation Documentation, Release latest

might need to be provided when building C sources with GCC. Otherwise linker errors such as the following are
produced:

Hint: For further details regarding how to call ghdl_main see Wrapping a simulation (ghdl_main).

Note: Alternatively, if the shared library is built with --bind and --list-link, the output from the later
can be filtered with tools such as sed in order to remove the default version script (accomplished in ghdl#640),
and make all symbols visible by default. However, this procedure is only recommended in edge cases where other
solutions don’t fit.

4.3 Loading a simulation

Attention: By default, GHDL uses grt.ver to limit which symbols are exposed in the generated artifacts,
and ghdl_main is not included. See Generating shared libraries for guidelines to generate shared objects
with visible or filtered symbols.

In order to generate a position independent executable (PIE), be it an executable binary or a shared library, GHDL
must be built with config option --default-pic. This will ensure that all the libraries and sources analyzed
by GHDL generate position independent code (PIC).

PIE binaries can be loaded and executed from any language that supports C-alike signatures and types (C, C++,
golang, Python, Rust, etc.). This allows seamless co-simulation using concurrent/parallel execution features avail-
able in each language: pthreads, goroutines/gochannels, multiprocessing/queues, etc. Moreover, it provides a
mechanism to execute multiple GHDL simulations in parallel.

For example, in Python:

import ctypes
gbin = ctypes.CDLL(bin_path)

args = ['-gGENA="value"', 'gGENB="value"']

xargs = (ctypes.POINTER(ctypes.c_char) * (len(args) + 1))()
for i, arg in enumerate(args):

xargs[i] = ctypes.create_string_buffer(arg.encode('utf-8'))
return args[0], xargs

gbin.main(len(xargv)-1, xargv)

import _ctypes
On GNU/Linux
_ctypes.dlclose(gbin._handle)
On Windows
#_ctypes.FreeLibrary(gbin._handle)

See a complete example written in C in shghdl.

Tip: As explained in Wrapping a simulation (ghdl_main), ghdl_main must be called once, since reset-
ing/restarting the simulation runtime is not supported yet (see ghdl#1184). When it is loaded dynamically, this
means that the binary file/library needs to be unloaded from memory and loaded again (as in shghdl).

10 Chapter 4. Dynamic loading

https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link
https://github.com/ghdl/ghdl/issues/640
https://github.com/ghdl/ghdl/issues/1184

GHDL Cosimulation Documentation, Release latest

Tip: See ghdl#803 for details about expected differences in the exit codes, depending on the version of the VHDL
standard that is used.

4.3. Loading a simulation 11

https://github.com/ghdl/ghdl/issues/803

GHDL Cosimulation Documentation, Release latest

12 Chapter 4. Dynamic loading

CHAPTER 5

Using GRT

5.1 From Ada

Warning: This topic is only for advanced users who know how to use Ada and GNAT. This is provided only
for reference; we have tested this once before releasing GHDL 0.19, but this is not checked at each release.

The simulator kernel of GHDL named GRT is written in Ada95 and contains a very light and slightly adapted
version of VHPI. Since it is an Ada implementation it is called AVHPI. Although being tough, you may interface
to AVHPI.

For using AVHPI, you need the sources of GHDL and to recompile them (at least the GRT library). This library is
usually compiled with a No_Run_Time pragma, so that the user does not need to install the GNAT runtime library.
However, you certainly want to use the usual runtime library and want to avoid this pragma. For this, reset the
GRT_PRAGMA_FLAG variable.

$ make GRT_PRAGMA_FLAG= grt-all

Since GRT is a self-contained library, you don’t want gnatlink to fetch individual object files (furthermore this
doesn’t always work due to tricks used in GRT). For this, remove all the object files and make the .ali files
read-only.

$ rm *.o
$ chmod -w *.ali

You may then install the sources files and the .ali files. I have never tested this step.

You are now ready to use it.

Here is an example, test_grt.adb which displays the top level design name.

with System; use System;
with Grt.Avhpi; use Grt.Avhpi;
with Ada.Text_IO; use Ada.Text_IO;
with Ghdl_Main;

procedure Test_Grt is
-- VHPI handle.

(continues on next page)

13

GHDL Cosimulation Documentation, Release latest

(continued from previous page)

H : VhpiHandleT;
Status : Integer;

-- Name.
Name : String (1 .. 64);
Name_Len : Integer;

begin
-- Elaborate and run the design.
Status := Ghdl_Main (0, Null_Address);

-- Display the status of the simulation.
Put_Line ("Status is " & Integer'Image (Status));

-- Get the root instance.
Get_Root_Inst(H);

-- Disp its name using vhpi API.
Vhpi_Get_Str (VhpiNameP, H, Name, Name_Len);
Put_Line ("Root instance name: " & Name (1 .. Name_Len));

end Test_Grt;

First, analyze and bind your design:

$ ghdl -a counter.vhdl
$ ghdl --bind counter

Then build the whole:

$ gnatmake test_grt -aL`grt_ali_path` -aI`grt_src_path` -largs
`ghdl --list-link counter`

Finally, run your design:

$./test_grt
Status is 0
Root instance name: counter

14 Chapter 5. Using GRT

CHAPTER 6

Examples

6.1 Quick Start

6.1.1 random

By default, GHDL includes the standard C library in the generated simulation models. Hence, resources from
stdlib can be used without any modification to the build procedure.

This example shows how to import and use rand to generate and print 10 integer numbers. The VHDL code
is equivalent to the following C snippet. However, note that this C source is NOT required, because stdlib is
already built in.

#include <stdlib.h>
#include <stdio.h>

int main (void) {
int i;
for (i = 0; i < 10; i++)
printf ("%d\n", rand ());

return 0;
}

6.1.2 math

By the same token, it is possible to include functions from system library by just providing the corresponding
linker flag.

In this example, function sin from the math library is used to compute 10 values. As in the previous example,
no additional C sources are required, because the math library is already compiled and installed in the system.

6.1.3 customc

When the required functionality is not available in pre-built libraries, custom C sources and/or objects can be
added to the elaboration and/or linking.

15

GHDL Cosimulation Documentation, Release latest

This example shows how to bind custom C functions in VHDL as either procedures or functions. Four
cases are included: custom_procedure, custom_procedure_withargs, custom_function and
custom_function_withargs. In all cases, the parameters are defined as integers, in order to keep it simple.
See Type declarations for further details.

Since either C sources or pre-compiled .o objects can be added, in C/C++ projects of moderate complexity, it
might be desirable to merge all the C sources in a single object before elaborating the design.

6.1.4 package

If the auxillary VHPIDIRECT subprograms need to be accessed in more than one entity, it is possible to package
the subprograms. This also makes it very easy to reuse the VHPIDIRECT declarations in different projects.

In this example 2 different entities use a C defined c_printInt(val: integer) subprogram to print two
different numbers. Subprogram declaration requirements are detailed under the Type declarations section.

6.2 Wrapping

6.2.1 basic

Instead of using GHDL’s own entrypoint to the execution, it is possible to wrap it by providing a custom main
function. Upon existence of main, execution of the simulation is triggered by calling ghdl_main.

This is the most basic example of such usage. ghdl_main is declared as extern in C, and arguments argc and
argv are passed without modification. However, this sets the ground for custom prepocessing and postprocessing
in a foreign language.

Other options are to just pass empty arguments (ghdl_main(0, NULL)) or to customize them:

char* args[] = {NULL, "--wave=wave.ghw"};
ghdl_main(2, args);

See Wrapping a simulation (ghdl_main) for further details about the constraints of argv.

6.2.2 time

Although most of the provided examples are written in C, VHPIDIRECT can be used with any language that
supports a C-alike compile and link model.

This example shows how to time the execution of a simulation from either C or Ada. In both cases, function
clock is used to get the time before and after calling ghdl_main. Regarding the build procedure, it is to be
noted that C sources are elaborated with -e, because GHDL allows to pass parameters (in this case, additional C
sources) to the compiler and/or linker. However, since it is not possible to do so with Ada, gnatmake, --bind
and --list-link are used instead. See Linking object files for further info about custom linking setups.

Hint: Compared to the previous example, the declaration of ghdl_main includes three arguments in this
example: int argc, void** argv, void** envp. This is done for illustration purposes only, as it has
no real effect on the exercise.

16 Chapter 6. Examples

https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link

GHDL Cosimulation Documentation, Release latest

6.3 Linking

6.3.1 bind

Although GHDL’s elaborate command can compile and link C sources, it is sometimes preferred or required to
call a compiler explicitly with custom arguments. This is useful, e.g., when a simulation is to be embedded in the
build of an existing C/C++ application.

This example is equivalent to basic, but it shows how to use --bind and --list-link instead of -e. See
Linking object files for further details.

Hint: Objects generated by --bind are created in the working directory. See GCC/LLVM only commands and
ghdl#781.

6.4 Shared

Important: As explained in Loading a simulation, in order to load binaries/libraries dynamically, those need to
be built as position independent code/executables (PIC/PIE).

6.4.1 shlib

This example features the same functionality as random. However, custom C sources are use (as in customc) and
these are built as a shared library. See Loading foreign objects from within a simulation for further info.

6.4.2 dlopen

Although this example does not include a simulation built with GHDL, it is a test and the introduction to the next
example. In this test, two separate shared libraries are built from C sources, both including a function named
ghdl_main. Then, in a main C application, both shared libraries are dynamically loaded at the same time, and
both are executed (one after the other)

This example tests whether symbol ghdl_main is visible in the shared libraries, and whether the same symbol
name can be loaded from multiple shared libraries (and used) at the same time.

Tip: If the symbol is not found, try adding -g, -rdynamic and/or -O0 when building the shared libraries. Tools
such as objdump, readelf or nm can be used to check if a symbol is visible. For instance, objdump -d
corea.so | grep ghdl_main.

Hint: Building multiple designs as separate artifacts and dynamically loading them at the same time is a naive
approach to multi-core simulation with GHDL. It is also a possible solution for coarse grained co-simulation with
Verilator.

6.4.3 shghdl

This example is complementary to shlib, since the VHDL simulation is built as a shared library, which is then
loaded from a main C application (as in dlopen).

When main is executed:

6.3. Linking 17

https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-list-link
https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#cmdoption-ghdl-e
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#cmdoption-ghdl-bind
https://ghdl.readthedocs.io/en/latest/using/CommandReference.html#gccllvm-only-programs
https://github.com/ghdl/ghdl/issues/781

GHDL Cosimulation Documentation, Release latest

• The shared libray is loaded, symbol print_something is searched for, and it is executed.

• Symbol ghdl_main is searched for, and it is executed three times. Unfortunately, GHDL does not cur-
rently support reseting/restarting the simulation runtime. Hence, in this example the shared library is un-
loaded and loaded again before calling ghdl_main after the first time.

See Generating_shared_libraries for further details with regard to the visibility of symbols in the shared libraries.

Note: On GNU/linux, both executable binaries and shared libraries use the ELF format. As a result, although
hackish, it is possible to load an executable binary dynamically, i.e. without using any of the shared options
explained in Generating_shared_libraries. In this example, this case is also tested. However, this is not suggested
at all, since it won’t work on all platforms.

6.5 Arrays

6.5.1 A Bounded Array Sized in C

Integer arrays fully defined in C can be passed to VHDL by first passing their size, so that an appropriate array
type can be created to hold the array’s pointer. After that, a VHDL subprogram can be defined to return the array
access.

A Bounded Array Sized in C: First defined in main()

If the integer array must be created or filled by some more advanced process before VHDL can request the array’s
pointer, it is possible to execute the GHDL simulation within a custom int main() entrypoint (see basic).
In this example the custom entrypoint prompts the user for the size of the array and then handles the variables
appropriately before going on to execute the GHDL simulation.

6.5.2 A Bounded Array Sized in VHDL

Interface generics are the generics of the toplevel VHDL entity, and their values can be set via GHDL’s runtime
option -g (see Simulation options). In this example an interface generic is used as an argument for the call of
the VHPIDIRECT subprogram c_intArr_ptr(arraySize: integer). This subprogram is linked to
the foreign C function getIntArr_ptr(int arraySize) which uses the argument to allocate an int*
enough space to contain arraySize integers, populating each index thereafter. The subprogram returns the
array’s pointer and each index is printed out in VHDL.

Note: The C function is actually extended to handle a second call. If the int* has been used before its memory
is freed, and if the new arraySize is greater than 0, the pointer is allocated enough memory again. In this way, a
VHDL subprogram call of c_intArr_ptr(0); frees the previously allocated memory.

6.6 Other co-simulation projects

This sections contains references to other co-simulation projects based on GHDL and VHPIDIRECT.

6.6.1 VUnit

VUnit is an open source unit testing framework for VHDL/SystemVerilog. Sharing memory buffers between
foreign C or Python applications and VHDL testbenches is supported through GHDL’s VHPIDIRECT features.

18 Chapter 6. Examples

https://ghdl.readthedocs.io/en/latest/using/Simulation.html#simulation-options
https://github.com/VUnit/vunit

GHDL Cosimulation Documentation, Release latest

Buffers are accessed from VHDL as either strings, arrays of bytes or arrays of 32 bit integers. See VUnit example
external buffer for details about the API.

6.6.2 ghdlex and netpp

netpp (network property protocol) is a communication library allowing to expose variables or other properties
of an application to the network as abstract ‘Properties’. Its basic philosophy is that a device always knows
its capabilities. netpp capable devices can be explored by command line, Python scripts or GUI applications.
Properties of a device - be it virtual or real - are typically described by a static description in an XML device
description language, but they can also be constructed on the fly.

ghdlex is a set of C extensions to facilitate data exchange between a GHDL simulation and external applications.
VHPIDIRECT mechanisms are used to wrap GHDL data types into structures usable from a C library. ghdlex
uses the netpp library to expose virtual entities (such as pins or RAM) to the network. It also demonstrates simple
data I/O through unix pipes. A few VHDL example entities are provided, such as a virtual console, FIFOs, RAM.

The author of netpp and ghdlex is also working on MaSoCist, a linux’ish build system for System on Chip designs,
based on GHDL. It allows to handle more complex setup, e.g. how a RISC-V architecture (for example) is regress-
tested using a virtual debug interface.

Interfacing with foreign languages through VHPIDIRECT is possible on any platform. You can define a subpro-
gram in a foreign language (such as C or Ada) and import it into a VHDL design.

Note: GHDL supports different backends, and not all of them generate binary artifacts. Precisely, mcode is an
in-memory backend. Hence, the examples need to be built/executed with either LLVM or GCC backends. A few
of them, the ones that do not require linking object files, can be used with mcode.

Attention: As a consequence of the runtime copyright, you are not allowed to distribute an executable
produced by GHDL without allowing access to the VHDL sources. See Copyrights | Licenses.

Tip: See ghdl#1053 for on-going work with regard to VHPIDIRECT.

6.6. Other co-simulation projects 19

https://github.com/VUnit/vunit/tree/master/examples/vhdl/external_buffer
https://section5.ch/index.php/netpp/
https://github.com/hackfin/ghdlex
https://section5.ch/index.php/netpp/
https://github.com/hackfin/MaSoCist
https://ghdl.readthedocs.io/en/latest/licenses.html#intro-copyrights
https://github.com/ghdl/ghdl/issues/1053

GHDL Cosimulation Documentation, Release latest

20 Chapter 6. Examples

CHAPTER 7

Examples

TBC

See VPI build commands.

TBC

21

https://ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#vpi-build-commands

GHDL Cosimulation Documentation, Release latest

22 Chapter 7. Examples

Index

F
foreign, 1

I
interfacing, 1

O
other languages, 1

S
SystemC, 1

V
VHPI, 1
VHPIDIRECT, 1
VPI, 1

23

	Type declarations
	Restrictions on type declarations

	Wrapping a simulation (ghdl_main)
	Linking object files
	Linking foreign object files to GHDL
	Linking GHDL object files to Ada/C

	Dynamic loading
	Loading foreign objects from within a simulation
	Generating shared libraries
	Loading a simulation

	Using GRT
	From Ada

	Examples
	Quick Start
	Wrapping
	Linking
	Shared
	Arrays
	Other co-simulation projects

	Examples
	Index

